Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 40
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Mol Neurosci ; 74(2): 37, 2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38568322

RESUMO

Alzheimer's disease (AD) is a progressive neurodegenerative disorder characterized by memory and cognitive impairment, often accompanied by alterations in mood, confusion, and, ultimately, a state of acute mental disturbance. The cerebral cortex is considered a promising area for investigating the underlying causes of AD by analyzing transcriptional patterns, which could be complemented by investigating blood samples obtained from patients. We analyzed the RNA expression profiles of three distinct areas of the brain cortex, including the frontal cortex (FC), temporal cortex (TC), and entorhinal cortex (EC) in patients with AD. Functional enrichment analysis was performed on the differentially expressed genes (DEGs) across the three regions. The two genes with the most significant expression changes in the EC region were selected for assessing mRNA expression levels in the peripheral blood of late-onset AD patients using quantitative PCR (qPCR). We identified eight shared DEGs in these regions, including AEBP1 and COLEC12, which exhibited prominent changes in expression. Functional enrichment analysis uncovered a significant association of these DEGs with the transforming growth factor-ß (TGF-ß) signaling pathway and processes related to angiogenesis. Importantly, we established a robust connection between the up-regulation of AEBP1 and COLEC12 in both the brain and peripheral blood. Furthermore, we have demonstrated the potential of AEBP1 and COLEC12 genes as effective diagnostic tools for distinguishing between late-onset AD patients and healthy controls. This study unveils the intricate interplay between AEBP1 and COLEC12 in AD and underscores their potential as markers for disease detection and monitoring.


Assuntos
Doença de Alzheimer , Humanos , Doença de Alzheimer/genética , Encéfalo , Lobo Temporal , Lobo Frontal , Córtex Entorrinal , Transtornos de Início Tardio , Colectinas , Receptores Depuradores , Carboxipeptidases , Proteínas Repressoras
2.
Sci Rep ; 14(1): 8560, 2024 04 12.
Artigo em Inglês | MEDLINE | ID: mdl-38609443

RESUMO

Metagenomics has revolutionized access to genomic information of microorganisms inhabiting the gut of herbivorous animals, circumventing the need for their isolation and cultivation. Exploring these microorganisms for novel hydrolytic enzymes becomes unattainable without utilizing metagenome sequencing. In this study, we harnessed a suite of bioinformatic analyses to discover a novel cellulase-degrading enzyme from the camel rumen metagenome. Among the protein-coding sequences containing cellulase-encoding domains, we identified and subsequently cloned and purified a promising candidate cellulase enzyme, Celcm05-2, to a state of homogeneity. The enzyme belonged to GH5 subfamily 4 and exhibited robust enzymatic activity under acidic pH conditions. It maintained hydrolytic activity under various environmental conditions, including the presence of metal ions, non-ionic surfactant Triton X-100, organic solvents, and varying temperatures. With an optimal temperature of 40 °C, Celcm05-2 showcased remarkable efficiency when deployed on crystalline cellulose (> 3.6 IU/mL), specifically Avicel, thereby positioning it as an attractive candidate for a myriad of biotechnological applications spanning biofuel production, paper and pulp processing, and textile manufacturing. Efficient biodegradation of waste paper pulp residues and the evidence of biopolishing suggested that Celcm05-2 can be used in the bioprocessing of cellulosic craft fabrics in the textile industry. Our findings suggest that the camel rumen microbiome can be mined for novel cellulase enzymes that can find potential applications across diverse biotechnological processes.


Assuntos
Celulase , Microbiota , Animais , Metagenoma , Camelus , Celulase/genética , Celulose
3.
Nat Prod Bioprospect ; 14(1): 7, 2024 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-38200389

RESUMO

Metagenomics has opened new avenues for exploring the genetic potential of uncultured microorganisms, which may serve as promising sources of enzymes and natural products for industrial applications. Identifying enzymes with improved catalytic properties from the vast amount of available metagenomic data poses a significant challenge that demands the development of novel computational and functional screening tools. The catalytic properties of all enzymes are primarily dictated by their structures, which are predominantly determined by their amino acid sequences. However, this aspect has not been fully considered in the enzyme bioprospecting processes. With the accumulating number of available enzyme sequences and the increasing demand for discovering novel biocatalysts, structural and functional modeling can be employed to identify potential enzymes with novel catalytic properties. Recent efforts to discover new polysaccharide-degrading enzymes from rumen metagenome data using homology-based searches and machine learning-based models have shown significant promise. Here, we will explore various computational approaches that can be employed to screen and shortlist metagenome-derived enzymes as potential biocatalyst candidates, in conjunction with the wet lab analytical methods traditionally used for enzyme characterization.

4.
Acta Parasitol ; 2024 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-38227109

RESUMO

PURPOSE: Visceral leishmaniasis (VL) is a systemic and parasitic disease that is usually fatal if left untreated. VL is endemic in different parts of Iran and is caused mainly by Leishmania infantum. This study aimed to recognition immunoreactive proteins in amastigote-like and promastigote stages of L. infantum (Iranian strain) by antibodies present in the sera of VL patients. METHODS: Total protein extract from amastigote-like and promastigote cells was separated by two-dimensional electrophoresis (2DE). To detect the immunoreactive proteins, 2DE immunoblotting method was performed using different pools of VL patients' sera. RESULTS: Approximately 390 and 430 protein spots could be separated in 2DE profiles of L. infantum amastigote-like and promastigote stages, respectively. In immunoblotting method, approximately 295 and 135 immunoreactive proteins of amastigotes-like reacted with high antibody titer serum pool and low antibody titer serum pool, respectively. Approximately 120 and 85 immunoreactive proteins of promastigote extract were recognized using the high antibody titer sera pool and low antibody titer sera, respectively. CONCLUSION: The present study has recognized a number of antigenic diversity proteins based on the molecular weight and pH in amastigote-like and promastigote stages of L. infantum. These results provide us a new concept for further analysis development in the field of diagnosis biomarkers and vaccine targets.

5.
Microbiol Spectr ; : e0078823, 2023 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-37707448

RESUMO

Anaerobic fungi (AF) inhabit the gastrointestinal tract of ruminants and play an important role in the degradation of fiber feed. However, limited knowledge is available on seasonal dynamics and inter-species differences in rumen AF community in yak and cattle under natural grazing systems. Using the random forests model, the null model, and structural equation model, we investigated the seasonal dynamics and key driving factors of fiber-associated rumen AF in grazing yak and cattle throughout the year on the Qinghai-Tibet Plateau (QTP). We found that the richness and diversity of rumen AF of grazing yak and cattle in cold season were significantly higher than those in warm season (P < 0.05). We identified 12 rumen AF genera, among which , Cyllamyces, and Orpinomyces were predominant in the rumen of both grazing yak and cattle. LEfSe and random forest analysis showed that Feramyces, Tahromyces, and Buwchfawromyces were important seasonal indicator of rumen AF in grazing yak (P < 0.05), and Caecomyces, Cyllamyces, and Piromyces in grazing cattle (P < 0.05). Null model analysis revealed that the dynamic changes of rumen AF community structure were mainly affected by deterministic factors. Notably, mantel test and structural equation model revealed that forage physical-chemical properties, including dry matter (DM), neutral detergent fiber (NDF), and hemicellulose contents (HC) were the key factors driving the seasonal variations of the rumen AF community (P < 0.05). The results revealed that forage lignocellulose was probably an important factor affecting the seasonal dynamics and inter-species differences of the rumen AF community under natural grazing conditions. IMPORTANCE The seasonal dynamics of rumen anaerobic fungi in nature grazing yak and cattle were determined during cold and warm seasons based on pasture nutritional quality and environmental data sets. The main driving factors of anaerobic fungi in yak and cattle rumen were explored by combining random forest and structural equation models. In addition, the dynamic differences in the composition of the anaerobic fungi community in the yak and cattle in different seasons were characterized. It was found that some rumen anaerobic fungi have contributed to high fiber degradation rate in yak. These novel findings improve our understanding of the association of environmental and dietary seasonal variations with anaerobic fungal community, facilitating yak adaptation to high altitude.

6.
Med Oncol ; 40(10): 287, 2023 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-37656231

RESUMO

Sine oculis homeobox 4 (SIX4), a critical transcription factor modulating organ development, potentially participates in tumorigenesis through numerous pathways. Here, we investigated siRNA-mediated knockdown effects of SIX4 on pancreatic cancer cells and underlying molecular mechanisms. The expression of SIX4 in pancreatic cancer and adjacent tissues were investigated in clinical tissue samples and bioinformatically approved by gene expression omnibus (GEO) database. Appropriate siRNA transfected into PANC1 pancreatic cancer cells in order to SIX4 knockdown. The survival, migration, invasion, colony formation, mitochondrial membrane potential, apoptosis, autophagy, and cell cycle in the cancer cells were investigated after knockdown of SIX4. In addition, expression of genes involved in apoptosis and metastasis were assessed in the transfected cancer cells in mRNA and protein levels. High-throughput analysis using GEO database confirmed the overexpression of SIX4 in pancreatic cancer tissues by six independent pancreatic cancer microarrays. Knockdown of SIX4 by specific siRNA significantly decreased survival, colony formation, and mitochondrial membrane potential of the cancer cells. Further assessments demonstrated that knockdown of SIX4 increases the apoptosis and autophagy rates in the cancer cells through modifying the expression of related genes. Moreover, a significant decrease in migration and invasion rates were observed in SIX4 suppressed group. Furthermore, frequency of the cells transfected with SIX4 siRNA increased slightly in G1 and Sub-G1 phases of cell cycle. Our study suggested that siRNA-mediated knockdown of SIX4 increases the pancreatic cancer cells death and reduces the invasion and migration of the cancer cells through different molecular pathways.


Assuntos
Neoplasias Pancreáticas , Humanos , Neoplasias Pancreáticas/genética , Apoptose/genética , Divisão Celular , RNA Interferente Pequeno/genética , Transativadores , Proteínas de Homeodomínio/genética , Neoplasias Pancreáticas
7.
Front Oncol ; 13: 1135836, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37397367

RESUMO

Introduction: The molecular mechanism of chemotherapy resistance in breast cancer is not well understood. The identification of genes associated with chemoresistance is critical for a better understanding of the molecular processes driving resistance. Methods: This study used a co-expression network analysis of Adriamycin (or doxorubicin)-resistant MCF-7 (MCF-7/ADR) and its parent MCF-7 cell lines to explore the mechanisms of drug resistance in breast cancer. Genes associated with doxorubicin resistance were extracted from two microarray datasets (GSE24460 and GSE76540) obtained from the Gene Expression Omnibus (GEO) database using the GEO2R web tool. The candidate differentially expressed genes (DEGs) with the highest degree and/or betweenness in the co-expression network were selected for further analysis. The expression of major DEGs was validated experimentally using qRT-PCR. Results: We identified twelve DEGs in MCF-7/ADR compared with its parent MCF-7 cell line, including 10 upregulated and 2 downregulated DEGs. Functional enrichment suggests a key role for RNA binding by IGF2BPs and epithelial-to-mesenchymal transition pathways in drug resistance in breast cancer. Discussion: Our findings suggested that MMP1, VIM, CNN3, LDHB, NEFH, PLS3, AKAP12, TCEAL2, and ABCB1 genes play an important role in doxorubicin resistance and could be targeted for developing novel therapies by chemical synthesis approaches.

8.
Environ Res ; 229: 115925, 2023 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-37086884

RESUMO

Ruminant animals house a dense and diverse community of microorganisms in their rumen, an enlarged compartment in their stomach, which provides a supportive environment for the storage and microbial fermentation of ingested feeds dominated by plant materials. The rumen microbiota has acquired diverse and functionally overlapped enzymes for the degradation of plant cell wall polysaccharides. In rumen Bacteroidetes, enzymes involved in degradation are clustered into polysaccharide utilization loci to facilitate coordinated expression when target polysaccharides are available. Firmicutes use free enzymes and cellulosomes to degrade the polysaccharides. Fibrobacters either aggregate lignocellulose-degrading enzymes on their cell surface or release them into the extracellular medium in membrane vesicles, a mechanism that has proven extremely effective in the breakdown of recalcitrant cellulose. Based on current metagenomic analyses, rumen Bacteroidetes and Firmicutes are categorized as generalist microbes that can degrade a wide range of polysaccharides, while other members adapted toward specific polysaccharides. Particularly, there is ample evidence that Verrucomicrobia and Spirochaetes have evolved enzyme systems for the breakdown of complex polysaccharides such as xyloglucans, peptidoglycans, and pectin. It is concluded that diversity in degradation mechanisms is required to ensure that every component in feeds is efficiently degraded, which is key to harvesting maximum energy by host animals.


Assuntos
Metagenoma , Rúmen , Animais , Rúmen/metabolismo , Rúmen/microbiologia , Lignina , Bactérias/genética , Bactérias/metabolismo , Polissacarídeos/metabolismo , Bacteroidetes/genética , Bacteroidetes/metabolismo
9.
NPJ Biofilms Microbiomes ; 8(1): 46, 2022 06 08.
Artigo em Inglês | MEDLINE | ID: mdl-35676509

RESUMO

Rumen microbiota facilitates nutrition through digestion of recalcitrant lignocellulosic substrates into energy-accessible nutrients and essential metabolites. Despite the high similarity in rumen microbiome structure, there might be distinct functional capabilities that enable different ruminant species to thrive on various lignocellulosic substrates as feed. Here, we applied genome-centric metagenomics to explore phylogenetic diversity, lignocellulose-degrading potential and fermentation metabolism of biofilm-forming microbiota colonizing 11 different plant substrates in the camel rumen. Diversity analysis revealed significant variations in the community of rumen microbiota colonizing different substrates in accordance with their varied physicochemical properties. Metagenome reconstruction recovered genome sequences of 590 bacterial isolates and one archaeal lineage belonging to 20 microbial phyla. A comparison to publicly available reference genomes and rumen metagenome-assembled genomes revealed that most isolates belonged to new species with no well-characterized representatives. We found that certain low abundant taxa, including members of Verrucomicrobiota, Planctomycetota and Fibrobacterota, possessed a disproportionately large number of carbohydrate active enzymes per Mb of genome, implying their high metabolic potential to contribute to the rumen function. In conclusion, we provided a detailed picture of the diversity and functional significance of rumen microbiota colonizing feeds of varying lignocellulose composition in the camel rumen. A detailed analysis of 591 metagenome-assembled genomes revealed a network of interconnected microbiota and highlighted the key roles of certain taxonomic clades in rumen function, including those with minimal genomes (e.g., Patescibacteria). The existence of a diverse array of gene clusters encoding for secondary metabolites unveiled the specific functions of these biomolecules in shaping community structure of rumen microbiota.


Assuntos
Microbiota , Rúmen , Animais , Camelus/microbiologia , Lignina , Microbiota/genética , Filogenia , Rúmen/microbiologia
10.
Mol Genet Genomic Med ; 10(5): e1913, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35212467

RESUMO

BACKGROUND: The genetic cause for the majority of patients with late-onset axonal form of neuropathies have remained unknown. In this study we aimed to identify the causal mutation in a family with multiple affected individuals manifesting a range of phenotypic features consistent with late-onset sensorimotor axonal polyneuropathy. METHODS: Whole exome sequencing (WES) followed by targeted variant screening and prioritization was performed to identify the candidate mutation. The co-segregation of the mutation with the phenotype was confirmed by Sanger sequencing. RESULTS: We identified a nonsense mutation (c.1564C>T; p.Q522*) in membrane metalloendopeptidase (MME) gene as the cause of the disease condition. The mutation has a combined annotation- dependent depletion (CADD) score 45 and predicted to be deleterious based on various algorithms. The mutation was inherited in an autosomal recessive mode and further confirmed to co-segregate with the disease phenotype in the family and showed to has the required criteria including rarity and deleteriousness to be considered as pathogenic. CONCLUSION: The MME gene encodes for the membrane bound endopeptidase neprilysin (NEP) which is involved in processing of various peptide substrates. The identified mutation causes a complete loss of carboxy-terminal region of the NEP protein which contains the zinc binding site and the catalytic domain and thus considered to be a loss-of-function mutation. The loss of NEP activity is likely associated with impaired myelination and axonal injury which is hallmark of CMT diseases.


Assuntos
Doença de Charcot-Marie-Tooth , Metaloendopeptidases/metabolismo , Polineuropatias , Doença de Charcot-Marie-Tooth/patologia , Códon sem Sentido , Endrin/análogos & derivados , Humanos , Padrões de Herança , Neprilisina/genética , Fenótipo , Polineuropatias/genética
11.
Front Microbiol ; 12: 660603, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34539590

RESUMO

The diverse chemical, biological, and microbial properties of litter and organic matter (OM) in forest soil along an altitudinal gradient are potentially important for nutrient cycling. In the present study, we sought to evaluate soil chemical, biological, microbial, and enzymatic characteristics at four altitude levels (0, 500, 1,000, and 1,500 m) in northern Iran to characterize nutrient cycling in forest soils. The results showed that carbon (C) and nitrogen (N) turnover changed with altitude along with microbial properties and enzyme activity. At the lowest altitude with mixed forest and no beech trees, the higher content of N in litter and soil, higher pH and microbial biomass nitrogen (MBN), and the greater activities of aminopeptidases affected soil N cycling. At elevations above 1,000 m, where beech is the dominant tree species, the higher activities of cellobiohydrolase, arylsulfatase, ß-xylosidase, ß-galactosidase, endoglucanase, endoxylanase, and manganese peroxidase (MnP) coincided with higher basal respiration (BR), substrate-induced respiration (SIR), and microbial biomass carbon (MBC) and thus favored conditions for microbial entropy and C turnover. The low N content and high C/N ratio at 500-m altitude were associated with the lowest microbial and enzyme activities. Our results support the view that the plain forest with mixed trees (without beech) had higher litter quality and soil fertility, while forest dominated by beech trees had the potential to store higher C and can potentially better mitigate global warming.

12.
Mol Biol Rep ; 48(2): 1707-1715, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33611780

RESUMO

Saffron stigmas are widely used as food additives and as traditional medicine in Iran and many other countries. The unique taste, flavor and pharmaceutical properties of saffron stigmas are due to the presence of three apocarotenoids secondary metabolites crocin, picrocrocin and safranal. There is limited knowledge about the effect of environmental stresses on the metabolism of apocarotenoids in saffron. We analyzed the content of crocin and picrocrocin and the expression of key genes of apocarotenoid biosynthesis pathways (CsCCD2, CsCCD4, CsUGT2, CsCHY-ß and CsLCYB) in saffron plants exposed to moderate (90 mM) and high (150 mM) salt (NaCl) concentrations. Measuring ion concentrations in leaves showed an increased accumulation of Na+ and decreased uptake of K+ in salt treated compared to control plants indicating an effective salt stress. HPLC analysis of apocarotenoids revealed that crocin production was significantly halted (P < 0.05) with increasing salt concentration while picrocrocin level did not change with moderate salt but significantly dropped by high salt concentration. Real-time PCR analysis revealed a progressive decrease in transcript levels of CsUGT2 and CsLCYB genes with increasing salt concentration (P < 0.05). The expression of CsCCD2 and CsCHY-ß tolerated moderate salt concentration but significantly downregulated with high salt concentration. CsCCD4 however responded differently to salt concentration being decreased with moderate salt but increased at higher salt concentration. Our result suggested that salt stress had an adverse effect on the production of saffron apocarotenoids and it is likely influencing the quality of saffron stigma produced.


Assuntos
Carotenoides/metabolismo , Crocus/química , Crocus/metabolismo , Cicloexenos/metabolismo , Estresse Salino/genética , Terpenos/metabolismo , Vias Biossintéticas/efeitos dos fármacos , Vias Biossintéticas/genética , Cromatografia Líquida de Alta Pressão , Crocus/efeitos dos fármacos , Crocus/genética , Regulação da Expressão Gênica de Plantas/genética , Glucosídeos/metabolismo , Folhas de Planta/química , Folhas de Planta/efeitos dos fármacos , Folhas de Planta/metabolismo , Potássio/metabolismo , Reação em Cadeia da Polimerase em Tempo Real , Sódio/metabolismo , Cloreto de Sódio/toxicidade
13.
PeerJ ; 9: e10463, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33510967

RESUMO

BACKGROUND: The rumen microbiota contributes strongly to the degradation of ingested plant materials. There is limited knowledge about the diversity of taxa involved in the breakdown of lignocellulosic biomasses with varying chemical compositions in the rumen. METHOD: We aimed to assess how and to what extent the physicochemical properties of forages influence the colonization and digestion by rumen microbiota. This was achieved by placing nylon bags filled with candidate materials in the rumen of fistulated sheep for a period of up to 96 h, followed by measuring forage's chemical characteristics and community structure of biofilm-embedded microbiota. RESULTS: Rumen degradation for all forages appeared to have occurred mainly during the first 24 h of their incubation, which significantly slowed down after 48 h of rumen incubation, depending on their chemical properties. Random Forest analysis predicted the predominant role of Treponema and Butyrivibrio in shaping microbial diversity attached to the forages during the course of rumen incubation. Exploring community structure and composition of fiber-attached microbiota revealed significant differential colonization rates of forages depending on their contents for NDF and cellulose. The correlation analysis highlighted the significant contribution of Lachnospiraceae and Veillonellaceae to fiber degradation in the sheep rumen. CONCLUSION: Our findings suggested that forage cellulose components are critical in shaping the pattern of microbial colonization and thus their final digestibility in the rumen.

14.
Exp Parasitol ; 222: 108065, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33428893

RESUMO

Visceral leishmaniasis (VL) is a protozoan disease caused by Leishmania infantum in the Mediterranean region including Iran. In 95% of cases, the disease can be fatal if not rapidly diagnosed and left untreated. We aimed to identify immunoreactive proteins of L. infantum (Iranian strain), and to design and evaluate a recombinant multi-epitope antigen for serodiagnosis of human VL. To detect the immunoreactive proteins of L. infantum promastigotes, 2DE immunoblotting technique was performed using different pooled sera of VL patients. The candidate immunoreactive proteins were identified using MALDI-TOF/TOF mass spectrophotometry. Among 125 immunoreactive spots detected in 2-DE gels, glucose-regulated protein 78 (GRP78), ubiquitin-conjugating enzyme E2, calreticulin, mitochondrial heat shock 70-related protein 1 (mtHSP70), heat shock protein 70-related protein, i/6 autoantigen-like protein, ATPase beta subunit, and proteasome alpha subunit 5 were identified. The potent epitopes from candidate immunodominant proteins including GRP78, mtHSP70 and ubiquitin-conjugating enzyme E2 were then selected to design a recombinant antigenic protein (GRP-UBI-HSP). The recombinant antigen was evaluated by ELISA and compared to direct agglutination test for detection of anti L. infantum human antibodies. We screened 34 sera of VL patients from endemic areas and 107 sera of individuals without L. infantum infection from non-endemic area of VL. The recombinant protein-based ELISA provided a sensitivity of 70.6% and a specificity of 84.1%. These results showed that GRP78, ubiquitin-conjugating enzyme E2, and mtHSP70 proteins are potential immunodominant targets of the host immune system in response to the parasite and they can be considered as potential candidate markers for diagnosis purposes.


Assuntos
Epitopos Imunodominantes/isolamento & purificação , Leishmania infantum/imunologia , Leishmaniose Visceral/diagnóstico , Proteômica/métodos , Sequência de Aminoácidos , Antígenos de Protozoários/isolamento & purificação , Western Blotting , Biologia Computacional/métodos , Eletroforese em Gel Bidimensional , Chaperona BiP do Retículo Endoplasmático , Ensaio de Imunoadsorção Enzimática , Epitopos/imunologia , Epitopos/isolamento & purificação , Humanos , Immunoblotting , Leishmaniose Visceral/imunologia , Conformação Molecular , Estrutura Secundária de Proteína , Proteômica/normas , Proteínas de Protozoários/isolamento & purificação , Proteínas Recombinantes/química , Proteínas Recombinantes/imunologia , Testes Sorológicos/métodos , Testes Sorológicos/normas , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz
15.
FEMS Microbiol Ecol ; 97(1)2021 01 05.
Artigo em Inglês | MEDLINE | ID: mdl-33021633

RESUMO

The objective of the present study was to evaluate how altitudinal gradients shape the composition of soil bacterial and fungal communities, humus forms and soil properties across six altitude levels in Hyrcanian forests. Soil microbiomes were characterized by sequencing amplicons of selected molecular markers. Soil chemistry and plant mycorrhizal type were the two dominant factors explaining variations in bacterial and fungal diversity, respectively. The lowest altitude level had more favorable conditions for the formation of mull humus and exhibited higher N and Ca contents. These conditions were also associated with a higher proportion of Betaproteobacteria, Acidimicrobia, Acidobacteria and Nitrospirae. Low soil and forest floor quality as well as lower bacterial and fungal diversity characterized higher altitude levels, along with a high proportion of shared bacterial (Thermoleophilia, Actinobacteria and Bacilli) and fungal (Eurotiomycetes and Mortierellomycota) taxa. Beech-dominated sites showed moderate soil quality and high bacterial (Alphaproteobacteria, Acidobacteria, Planctomycetes and Bacteroidetes) and fungal (Basidiomycota) diversity. Particularly, the Basidiomycota were well represented in pure beech forests at an altitude of 1500 m. In fertile and nitrogen rich soils with neutral pH, soil quality decreased along the altitudinal gradient, indicating that microbial diversity and forest floor decomposition were likely constrained by climatic conditions.


Assuntos
Micobioma , Micorrizas , Bactérias/genética , Florestas , Fungos/genética , Solo , Microbiologia do Solo
16.
ISME J ; 15(4): 1108-1120, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33262428

RESUMO

Rumen microbiota play a key role in the digestion and utilization of plant materials by the ruminant species, which have important implications for greenhouse gas emission. Yet, little is known about the key taxa and potential gene functions involved in the digestion process. Here, we performed a genome-centric analysis of rumen microbiota attached to six different lignocellulosic biomasses in rumen-fistulated cattle. Our metagenome sequencing provided novel genomic insights into functional potential of 523 uncultured bacteria and 15 mostly uncultured archaea in the rumen. The assembled genomes belonged mainly to Bacteroidota, Firmicutes, Verrucomicrobiota, and Fibrobacterota and were enriched for genes related to the degradation of lignocellulosic polymers and the fermentation of degraded products into short chain volatile fatty acids. We also found a shift from copiotrophic to oligotrophic taxa during the course of rumen fermentation, potentially important for the digestion of recalcitrant lignocellulosic substrates in the physiochemically complex and varying environment of the rumen. Differential colonization of forages (the incubated lignocellulosic materials) by rumen microbiota suggests that taxonomic and metabolic diversification is an evolutionary adaptation to diverse lignocellulosic substrates constituting a major component of the cattle's diet. Our data also provide novel insights into the key role of unique microbial diversity and associated gene functions in the degradation of recalcitrant lignocellulosic materials in the rumen.


Assuntos
Microbiota , Rúmen , Animais , Bovinos , Fermentação , Lignina/metabolismo , Metagenoma , Rúmen/metabolismo
17.
FEMS Microbiol Ecol ; 96(6)2020 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-32304321

RESUMO

The attachment of rumen microbes to feed particles is critical to feed fermentation, degradation and digestion. However, the extent to which the physicochemical properties of feeds influence the colonization by rumen microbes is still unclear. We hypothesized that rumen microbial communities may have differential preferences for attachments to feeds with varying lignocellulose properties. To this end, the structure and composition of microbial communities attached to six common forages with different lignocellulosic compositions were analyzed following in situ rumen incubation in male Taleshi cattle. The results showed that differences in lignocellulosic compositions significantly affected the inter-sample diversity of forage-attached microbial communities in the first 24 h of rumen incubation, during which the highest dry matter degradation was achieved. However, extension of the incubation to 96 h resulted in the development of more uniform microbial communities across the forages. Fibrobacteres were significantly overrepresented in the bacterial communities attached to the forages with the highest neutral detergent fiber contents. Ruminococcus tended to attach to the forages with low acid detergent lignin contents. The extent of dry matter fermentation was significantly correlated with the populations of Fibrobacteraceae, unclassified Bacteroidales, Ruminococcaceae and Spirochaetacea. Our findings suggested that lignocellulosic compositions, and more specifically the cellulose components, significantly affected the microbial attachment to and thus the final digestion of the forages.


Assuntos
Microbiota , Rúmen , Ração Animal/análise , Animais , Bovinos , Dieta , Fibras na Dieta/metabolismo , Digestão , Fermentação , Lignina/metabolismo , Masculino , Rúmen/metabolismo
18.
Proteomics ; 19(16): e1800105, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31218790

RESUMO

Beneficial microbes have a positive impact on the productivity and fitness of the host plant. A better understanding of the biological impacts and underlying mechanisms by which the host derives these benefits will help to address concerns around global food production and security. The recent development of omics-based technologies has broadened our understanding of the molecular aspects of beneficial plant-microbe symbiosis. Specifically, proteomics has led to the identification and characterization of several novel symbiosis-specific and symbiosis-related proteins and post-translational modifications that play a critical role in mediating symbiotic plant-microbe interactions and have helped assess the underlying molecular aspects of the symbiotic relationship. Integration of proteomic data with other "omics" data can provide valuable information to assess hypotheses regarding the underlying mechanism of symbiosis and help define the factors affecting the outcome of symbiosis. Herein, an update is provided on the current and potential applications of symbiosis-based "omic" approaches to dissect different aspects of symbiotic plant interactions. The application of proteomics, metaproteomics, and secretomics as enabling approaches for the functional analysis of plant-associated microbial communities is also discussed.


Assuntos
Proteínas de Plantas/metabolismo , Raízes de Plantas/metabolismo , Plantas/metabolismo , Proteômica/métodos , Simbiose , Produtos Agrícolas/metabolismo , Produtos Agrícolas/microbiologia , Fabaceae/metabolismo , Fabaceae/microbiologia , Modelos Biológicos , Nodulação , Raízes de Plantas/microbiologia , Plantas/microbiologia , Rhizobium/fisiologia
19.
Iran J Parasitol ; 14(1): 10-19, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31123464

RESUMO

BACKGROUND: Visceral leishmaniasis (VL) is endemic in the northwest and south of Iran. Untreated cases of VL could cause death. The aim of the present study was to evaluate the diagnostic performance of western blotting to detect a specific immunodominant proteins pattern for Leishmania infantum infection using human sera infected with VL. METHODS: We studied a panel of 122 cryopreserved human serum samples from the leishmaniasis Research Laboratory, Tehran University of Medical Sciences, Tehran, Iran from 2010 to 2017.Serum samples were collected from visceral (Group I, n: 43) and cutaneous leishmaniasis (CL) (Group II, n: 8) patients, healthy individuals from endemic (Group III, n: 13) and non-endemic (Group IV, n: 16) areas for VL, and patients with other infectious diseases (Group V, n: 42). Total antigens were prepared from the Iranian strain of L. infantum promastigote form. RESULTS: In western blotting method, 34 protein bands of 14 to 163 kDa were recognized using the sera of VL patients. The polypeptide fractions with the highest frequency including 29, 51, and 62 kDa fractions were detected using 81.4%, 79%, and 81.4% of the sera, respectively. These bands were not detected using the sera of the negative control. Moreover, 19-23, 27, 31-35, 143-163, and 109 kDa fractions were detected specifically using the sera of the patients with VL. CONCLUSION: This technique could be a primary step for further exploration of VL immunodominant antigens for cloning (or any technique) further investigations for future planning.

20.
Biotechnol Biofuels ; 11: 216, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30083229

RESUMO

BACKGROUND: The diverse microbiome present in the rumen of ruminant animals facilitates the digestion of plant-based fiber. In this study, a shotgun metagenomic analysis of the microbes adhering to plant fiber in the camel rumen was undertaken to identify the key species contributing to lignocellulose degradation and short chain volatile fatty acids (VFA) fermentation. RESULTS: The density of genes in the metagenome encoding glycoside hydrolases was estimated to be 25 per Mbp of assembled DNA, which is significantly greater than what has been reported in other sourced metagenomes, including cow rumen. There was also a substantial representation of sequences encoding scaffoldins, dockerins and cohesins, indicating the potential for cellulosome-mediated lignocellulose degradation. Binning of the assembled metagenome has enabled the definition of 65 high-quality genome bins which showed high diversity for lignocellulose degrading enzymes. Species associated to Bacteroidetes showed a high proportion of genes for debranching and oligosaccharide degrading enzymes, while those belonging to Firmicutes and Fibrobacteres were rich in cellulases and hemicellulases and thus these lineages were probably the key for ensuring the degradation of lignocellulose. The presence of many "polysaccharide utilization loci" (PULs) in Bacteroidetes genomes indicates their broad substrate specificity and high potential carbohydrate degradation ability. An analysis of VFA biosynthesis pathways showed that genes required for the synthesis of acetate were present in a range of species, except for Elusimicrobiota and Euryarchaeota. The production of propionate, exclusively via the succinate pathway, was carried out by species belonging to the phyla Bacteroidetes, Firmicutes, Spirochaetes and Fibrobacteres. Butyrate was generated via the butyrylCoA: acetate CoA-transferase pathway by Bacteroidetes and Lentisphaerae species, but generally via the butyrate kinase pathway by Firmicutes species. CONCLUSION: The analysis confirmed the camel rumen's microbiome as a dense and yet largely untapped source of enzymes with the potential to be used in a range of biotechnological processes including biofuel, fine chemicals and food processing industries.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...